European seismology received a stimulus in 1952 when IASPEI founded the European Seismological Commission (ESC) with a brief to build contacts and trust, in order to improve data exchange for understanding European earthquakes and hazards. In 1976, ESC established the European Mediterranean Seismological Centre to provide a “rapid” trans-border service for earthquake parameter data. Later, ESC adopted ORFEUS for waveforms. As technologies and communications have advanced, “rapidity” has achieved minutes for earthquake identification and 10s of minutes for reviewed dissemination to authorities and the public. Through website surges, EMSC identifies events before seismic waves have traversed Europe.

A series of radar satellites launched by the European Space Agency in 1991, opened new opportunities using SAR data. And, with the invention of the PSinSAR technique by Politecnico Milano and TRE, around 2000, a new era arrived to complement advances in seismology. PSinSAR can map and monitor ground movements at the millimetric scale. Through ESA’s Terrafirma project, we can now identify vulnerable foundation soils beneath cities, complementing ground-based investigations of risk. Terrafirma work in progress is also revealing millimetric motions in earthquake preparation zones in Greece and Turkey. Satellite repeat times are reducing from 35 days and, in the next few years, will be less than five. Beyond that, we conclude that monitoring at the hours scale will become a reality. So, the increasing rapidity of satellite radar data availability will mirror advances in seismic data utilisation since the foundation of ESC. However, the trans-national nature and rapidity of information dissemination raises responsibility and liability questions as yet unanswered.