Seasonal forecasting of the Asian summer monsoon is of significant importance to the local population, but dynamical models often struggle to reproduce the observed response to ENSO. Here we examine the response of the Asian summer monsoon to ENSO forcing in the Met Office GloSea4 coupled seasonal forecasting system over a hindcast period of 1992-2005, using initialisation dates in late April and early May. El Nino case studies for 1997 (large amplitude, east Pacific) and 2002 (moderate amplitude, central Pacific) are examined. While long integrations of this model show realistic monsoon-ENSO teleconnections, the model struggles to reproduce the particular response seen in the observations for these two years. In 1997, the observed monsoon was near normal, despite the large amplitude Pacific SST anomalies; however, the hindcast simulates monsoon drought. 2002 was one of the worst monsoon droughts in recent decades despite only moderate El Nino conditions. In contrast, the hindcast suggested anomalously strong rainfall over central India in some members. In both cases, the ENSO-forced anomalous subsidence over the Indian Ocean sector is situated too far to the west in the hindcast, erroneously impacting or missing India in 1997 and 2002 respectively. We examine whether errors in the daily evolution of the coupled model SST field subsequent to the initialisation can be implicated in the poor hindcast skill. We hypothesize that systematic model biases in the equatorial west Pacific lead to the incorrect placement of the diabatic heating anomalies associated with El Nino, to the detriment of the monsoon-ENSO teleconnection.