The mean climatological water transport across Subantarctic Front (SAF), consisted of Ekman transport, SAF eddy transfer and transport by abyssal geostrophic currents, is estimated on the base of corresponding observational data: wind-stress climatology (SOC climatology), 5-year (1996–2000) series of satellite altimetry gridded data (Topex/Poseidon, ERS-1, -2), and half-degree WOCE hydrographic climatology. The resulting total transport is 14 Sv northward in the upper ocean layer (thermocline) and the same value southward in the lower layer (abyss). This value is equal to the well-known assessment of the magnitude of water downwelling from thermocline to the abyss in the North Atlantic and North-European Sea which is realized in the field of Global Ocean Conveyor Belt. This result is in agreement with the conception according to which the oppositely directed water motion from abyss to thermocline takes place in the Antarctic. Ekman northward water transport across SAF (28 Sv) is compensated by the total southward transport of SAF eddies (-14 Sv in the thermocline and -5 Sv in the abyss), and also by the abyssal geostrophic currents (-9 Sv). The greatest contributions to the Ekman water transport across SAF, to the total eddy transport, and to the total abyssal geostrophic currents make respectively the Indian, Pacific, and Atlantic sectors of the Southern Ocean.