Over a broad area of the subtropical North Pacific, there exists a water mass termed North Pacific Intermediate Water (NPIW) that is characterized by a salinity minimum centered around 26.8 \(\sigma_\theta \). The tide-induced diapycnal mixing in the Kuril Straits has been regarded as one of the essential factors responsible for the formation of the NPIW. To assess accurately the effect of tidal mixing in the Kuril Straits on the formation of the NPIW, the spatial distribution of diapycnal diffusivity recently obtained by the present authors is incorporated into an eddy-permitting ocean general circulation model (OGCM). It is shown that the NPIW is successfully reproduced, although the diapycnal diffusivity averaged over the entire Kuril Straits is an order of magnitude less than has previously been assumed as a tuning parameter to reproduce the NPIW in low-resolution OGCMs. This strongly suggests that the effect of tidal mixing in the Kuril Straits on the formation of the NPIW is relatively minor and that the physical processes omitted by the low-resolution OGCMs, such as isopycnal mixing along the Kuroshio Extension region, are much more important. This suggestion gives warning of the danger that some misleading conclusions might be derived from OGCMs that employ diapycnal diffusivity just as a tuning parameter to reproduce the observed features.