Manaker et al. (2008) used sparse GPS and earthquake slip data from the northeastern Caribbean to construct a DEFNODE block and fault model to constrain interseismic fault coupling among the microplates in the northeastern Caribbean. They concluded that the Enriquillo fault in Haiti could produce a $M_w 7.2$, if the entire accumulated elastic strain was released in one event. On January 12, 2010, the strain was released in a $M_w 7.0$ earthquake that left Port-au-Prince in rubble. The interseismic GPS velocity field has been updated for Hispanolia (Calais et al., 2010); in addition, new data have been collected in the northern Lesser Antilles (NLA) and the existing GPS time series updated and transformed into ITRF05. GPS data from the NLA are consistent with a NLA forearc sliver that moves differently from the Caribbean and North American plates as proposed by Lopez et al. (2006). We report revised DEFNODE models using both the original geometry and constraints of Manaker et al. (2008) with an updated GPS data set as well as new models that explicitly include a forearc block. The original model geometry (without a forearc sliver) yields a higher reduced chi-squared (2.57 vs. 2.01), when additional the GPS velocities from NLA are used to condition the model with the same number of parameters ($n=18$); the fit is improved, however, if a forearc is included and the locking constraints on the boundary faults are relaxed. Revisions to the model geometry result in lower predicted values of coupling along the Lesser Antilles trench interface.