Central Himalaya and its adjoining region (26°- 31° N and 79°–90° E) has signatures of great earthquakes in the past and potential to future. The spatial distribution of earthquakes with \( m_b \geq 4.1 \) from 1803 to 2006 have been used to delineate four seismic regions (A, B, C and D) based on the level of seismic activity and further, into eleven seismic zones using the same criteria. \( b \)- Values range from 0.95 to 1.12, being lowest in the region C and being highest in the region B, illustrates region B is relatively under the state of large compression. Seismic energy release with depth exhibits non-uniform pattern and mostly confined within 40 km depth column. Its variation with depth differs from one region to another and it is 20-30 km, 30-40 km and 50-60 km in the Western (A), Central (B) and the Eastern Nepal Himalaya regions (C), respectively; whereas it is 10-20 km in the South Central Tibet region (D). Almost entire seismic energy (> 97%) in each of the regions is confined within 0-60 km depth column representing that the seismic activity is originating within the thick crust. The earthquake frequency and the focal depth show similar pattern as that of energy release with focal depth. Spatio-temporal pattern in seismicity are the most common precursory indicator for the future earthquake hazard. Space-time plot of large earthquakes epicenters position projected on Himalayan arc articulate the probable extent of identified seismic gap vulnerable for potential slip in future great earthquake.