In the framework of the recapitalization of NORSAR’s arrays NOA and ARCES (IMS stations PS27 and PS28, respectively) and the upgrade of the SPITS array (IMS station AS72), new digitizers and seismometers are being installed. One goal is to obtain a sensor-type suitable for all our arrays. A uniform sensor at all sites will simplify maintenance and data processing and improve operational readiness. After investigating the ambient noise conditions at all NORSAR arrays, we opted for a sensor with a hybrid transfer function: proportional to ground velocity for low frequencies (< 0.333 Hz), to ground acceleration in the intermediate band (0.333 - 2 Hz), and to ground velocity for frequencies above 2 Hz. We have been testing the first two prototypes (3C) and a second batch of seven (five 3C and two vertical) sensors manufactured by Güralp. Some unwanted peaks in the high-frequency range (35-50 Hz) in the prototypes were eliminated in the second batch. The 3C (360s - 50 Hz) and vertical sensors (120 s - 50 Hz) were tested for self-noise and coherency. The self-noise is below the Peterson low-noise model for frequencies above 0.03 Hz. Huddle tests at NORSAR’s test site showed good coherency for frequencies between 0.03 and 40 Hz during very quiet time periods. For frequencies below 0.03 Hz the sensor noise was higher than the local ambient noise, however, at very low-frequencies (earth tides) good coherency could be observed again. All NOA instruments will be replaced in 2011 with the new hybrid broadband sensors.