Sprites are short lived (<~0.1s) electro-optical emissions in the 50-100 km height range above active thunderstorms. These phenomena have been observed optically above Central Europe from Sopron [16.58°E, 47.68°N, 231 m AMSL], Hungary, for ~600 km round of the town with a conventional frame rate Watec 902H2 Ultimate low-light surveillance camera since 2007. 368 sprite events were captured from the Sopron detection site on 28 nights in the 2007-2009 period. They show great variability in the directly perceptible properties of these phenomena such as the shape and duration of the emissions as well as the number of individual light emitting entities in an event. Focusing on these properties, sprites have been sorted with similar characteristics into groups. Different approaches to the problem of classification are shown. Regarding mainly the shape of sprites, various formerly defined categories are revisited and peculiarities of the classic forms (e.g. columns and carrots) observed during the observations are noted. Statistics of occurrence of the different sprite forms are presented. The optically observable lifetime of sprites with different shapes was examined for events captured above the same thunderstorm running at relatively constant distance from the observation site. Analysis of records unambiguously indicates that brighter events occupying large space tend to have shorter lifetime.