Kima’Kho Mountain is a 1.8 Ma Pleistocene basaltic tuya situated in northern British Columbia. Erosion offers outstanding exposure of the edifice and exposes a stratigraphic sequence of: i) massive to crudely-bedded lapilli tuff, overlain by ii) an outward steeply-dipping sequence of coarsely bedded deposits of basaltic tuff-breccia, iii) unconsolidated deposits of moderately sorted, ash to lapilli scoria, and iv) a capping sequence of flat-lying lavas (Ryane et al., this session). The massive to crudely-bedded lapilli tuffs are distinctive in that they contain armoured lapilli, comprising a single highly-vesicular pyroclast core coated with blocky to cuspate vitric ash fragments. The lapilli-tuff is interpreted to have formed by explosive volcanism within an ice-enclosed lake, and deposited by wet, dilute pyroclastic surge events. The western plateau of Kima’Kho comprises bedded basaltic tuff-breccia stratigraphically overlying the lapilli-tuff, and is interpreted to have formed within an effusive subaqueous lava-fed delta. Coherent, intact pillow basalts and scoriaceous lapilli-tephra are found stratigraphically above the lapilli-tuff. The scoria is interpreted to have formed during subaerial fire-fountaining. The edifice represents an initial explosive eruption, followed by a transition to effusive activity. Our field observations contradict the classic tuya model: an effusive onset to the eruption, forming pillow basalts, followed by explosive activity. Here, pillow basalts are found in the upper part of the sequence; i.e., the inverse of the classic model. We suggest an alternative model of tuya architecture, showing: 1) no basal pillow basalts, 2) lapilli-tuff at the base, followed by 3) basaltic tuff-breccia and capping lavas.