It has long been recognized that whistler-mode waves can be trapped in plasmaspheric whistler ducts which guide the waves. For non-guided cases these waves are said to be "nonducted", which is dominant for L<1.6. Wave-particle interactions are affected by the wave being ducted or non-ducted. In the field-aligned ducted case, first-order cyclotron resonance is dominant, whereas non-ducted interactions open up a much wider range of energies through equatorial and off-equatorial resonance. There is conflicting information as to whether the most significant particle loss processes are driven by ducted or non-ducted waves. In this study we use loss cone observations from the DEMETER and POES low-altitude satellites to focus on electron losses driven by powerful VLF communications transmitters. Both satellites confirm that there are well-defined enhancements in the flux of electrons in the drift loss cone due to ducted transmissions from the powerful transmitter with call-sign NWC. Typically ~80% of DEMETER nighttime orbits to the east of NWC show electron flux enhancements in the drift loss cone, spanning an L-range consistent with first-order cyclotron theory, and inconsistent with non-ducted resonances. In contrast, ~1% or less of non-ducted transmissions originating from NPM generated electron flux enhancements. While the waves originating from these two transmitters have been predicted to lead to similar levels of pitch angle scattering, we find that the enhancements from NPM are at least 50 times smaller than those from NWC. This suggests that lower latitude, nonducted VLF waves are much less effective in driving radiation belt pitch angle scattering.