Earthquake Fault Superhighways

D. P. Robinson1, S. Das1, M. P. Searle1
1Dept of Earth Sciences, University of Oxford, UK.

Motivated by the observation that the rare earthquakes which propagated for significant distances at supershear speeds occurred on very long straight segments of faults, we examine every known major active strike-slip fault system on land worldwide and identify those with long (>100 kilometers) straight portions capable not only of sustained supershear rupture speeds but having the potential to reach compressional wave speeds over significant distances, and call them “fault superhighways”. The criteria used for identifying these are discussed. These superhighways include portions of the 1000 kilometer long Red River fault in China and Vietnam passing through Hanoi, the 1050 kilometer long San Andreas fault in California passing close to Los Angeles, Santa Barbara and San Francisco, the 1100 kilometer long Chaman fault system in Pakistan north of Karachi, the 700 kilometer long Sagaing fault connecting the first and second cities of Burma, Rangoon and Mandalay, the 1600 kilometer Great Sumatra fault, and the 1000 kilometer Dead Sea fault. Of the 11 faults so classified, nine are in Asia and two in North America, with seven located near areas of very dense populations. Based on the current population distribution within 50 kilometers of each fault superhighway, we find that more than 60 million people today have increased seismic hazards due to them.

Tectonophysics, 493 (3-4), 236-243 doi:10.1016/j.tecto.2010.01.010