Titan is the only moon, except the moon of Jupiter Io, supplied with a dense atmosphere. This neutral environment is mainly composed of methane, molecular nitrogen and molecular hydrogen, which is partly ionized by different mechanisms (photoionization, impact from magnetospheric electrons and charge exchanges) leading to “planetary” plasma. The ionosphere forms a conductive obstacle which deflects the incoming flow and twists the magnetic field around the body and leads to a draped field region called the induced magnetosphere. The understanding of Titan’s environment and its evolution is one of the main objectives of the Cassini mission. After more than 70 flybys, Cassini revealed a much more complex and variable environment than was thought after the Voyager 1 encounter. Titan’s is embedded in different region of Saturn’s magnetosphere (lobes, magnetodisk, magnetosheath,...) with various plasma beta and thus the interaction between the neutral environment and the incoming plasma change significantly. Based on 3D simulations and Cassini observations we try to characterize the different regions and the influence of some parameters on Titan’s induced magnetosphere, its ionosphere and the dynamic of the magnetospheric and planetary plasma in the vicinity of the moon.