In midsummer 2010, extreme weather conditions occurred at distant locations over Eurasia, including Russian heat wave, Pakistan flood, and Japanese hot summer, which seem to be associated with persistent anomalous meanders of the upper-level westerlies. Our wave-activity flux analysis (Takaya and Nakamura 2001) applied to the Japanese 25-year reanalysis (JRA-25) suggests that recurrent propagation of a quasi-stationary Rossby wave packet across the North Atlantic contributed to the formation and maintenance of a blocking high over western Russia. Rossby wave activity accumulated in the blocking high was often released eastward along the subpolar jet, giving rise to anomalous coolness over central Siberia. In late July through early August, wave activity was released southeastward from the Russian blocking high, which led to the formation of an upper-level pressure trough and ridge to the northwest and northeast of Pakistan, respectively. Potential-vorticity inversion analysis (Hoskins et al. 1985) suggests that this upper-level ridge acted to induce the lower-level southeasterlies that can contribute to anomalous moisture flux into northern Pakistan, where the flood occurred. The stationary Rossby wave train then propagated further eastward along the subtropical Asian Jet into the North Pacific, as a manifestation of the Silk Road pattern (Enomoto et al. 2003). The associated upper-level pressure ridge over Japan accompanied the intensification of the surface Bonin High, causing the extremely hot summer. Our diagnoses mentioned above suggest that the extreme weather conditions that occurred at the several regions over Eurasia in midsummer 2010 were linked by propagation of quasi-stationary Rossby waves.