A new geo-engineering idea is proposed that acts to release heat to space rather than reflect sunlight. Greenhouse gases and cirrus clouds regulate outgoing longwave radiation (OLR) and cirrus cloud coverage is predicted to be sensitive to the ice fall speed which depends on ice crystal size. The higher the cirrus, the greater their impact is on OLR. Thus by changing ice crystal size in the coldest cirrus, OLR and climate might be modified. Fortunately the coldest cirrus have the highest ice supersaturation that may involve homogeneous freezing nucleation. Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects (i.e. natural ice crystals nucleate at higher supersaturations), thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing are more negative than $-2.8 \, \text{W m}^{-2}$ and could neutralize the radiative forcing due to a CO$_2$ doubling ($3.7 \, \text{W m}^{-2}$). A potential delivery mechanism for the seeding material is already in place: the airline industry. Since seeding aerosol residence times in the troposphere are relatively short, the climate might return back to its normal state within months after stopping the geoengineering experiment. The main known drawback to this approach is that it would not stop ocean acidification. While untested, it does not appear to have many of the drawbacks that stratospheric injection of sulfur species has. A research plan is outlined for investigating this approach, as well as cost estimates and preliminary research.