The 204 ± 5 ka Sovana Eruptive Unit represents a major phase of caldera collapse at the 9 km x 7 km polygenetic Latera caldera (Vulsini Volcanic District, Italy). In order to better understand the proximal dynamics of the ignimbrite-producing eruption, we conducted a field and sedimentological study of proximal to medial (up to 12 km from the caldera rim) ignimbrite. Clast types, abundances, and dimensions were measured in the field for coarse lapilli (> 3 cm) to blocks. Samples of matrix were sieved (-4 to 4 phi), and componentry was analyzed in the 0 to -1 phi range. This portion of the breccia matrix is composed of a mixture of different crystals, juvenile fragments (with a density spectrum from strongly vesiculated pumice to obsidian), and various lithics. Systematic variations in the granulometry and componentry of breccia units are vague at best, making confident correlations of breccia units at different outcrops difficult. This, particularly when considered alongside breccia deposit morphologies and irregular boundaries between the units, reveals the degree of complexity associated with interpreting the deposits. We explore the possibility that these deposits reflect either rapidly fluctuating flow characteristics or differing vent locations within the caldera. A combination of both seems especially plausible, as proximal deposits record significantly more details of eruption complexity than do distal deposits, which only record far-traveled PDCs and because the caldera dimensions are roughly equivalent to the lateral extent of breccia units.