In the frame of global atmospheric electric circuit concept, thunderstorms are responsible for maintaining a slowly time-varying electric potential difference of ~250 kV between the ionosphere and the earth surface. In the polar regions a current flows from the ionosphere to the ground and a vertical electric field (E_z) can be measured near ground-level. In addition to the meteorological generator, at high latitudes the solar wind-and magnetospheric phenomena imposes relatively rapid potential variations (U) in the overhead ionosphere. Regular measurements of E_z variations are performed at Vostok station (mlat 83.6°S) in Antarctica. In the northern hemisphere E_z is measured at Hornsund observatory (mlat 74°N) at Spitsbergen. In this paper we evaluate the relationship between the E_z obtained under the conditions of “fair weather” and the U obtained from the SuperDARN observations, convection models and ground magnetic measurements on the basis of selected days and a larger statistics. It is shown that under certain IMF/solar zenith angle conditions the E_z reflects fairly well the overhead U in the near-pole region. At the auroral latitudes E_z primarily responds to the substorm development. Quantitative characteristics of the E_z-U relationship are presented.