The plasmaspheric hiss has been observed for long time as the plasmasphere is practically always filled in by these waves that can also appear in other high-density regions such as in plasmaspheric plumes on the dusk sector. However, the generation mechanism of hiss remains still open. It is believed that hiss that can cause loss of radiation belt particles, and so it is highly important to fully understand the generation mechanism and characteristics of hiss. To gain more knowledge of the plasmaspheric hiss one needs to have multi-point measurements, and in this presentation we will focus on the observations of the four polar-orbiting Cluster spacecraft that allow to distinguish temporal and spatial variations of hiss. Each orbit includes two crossings of the inner magnetosphere on two hemispheres and so one can follow variations of hiss during some 2-3 hours by four spacecraft every few days. The power of plasmaspheric hiss often appears to be highly correlated with the local plasma density. The correlation becomes poorer in active intervals and is improved during more quiet intervals. There is no one-to-one correlation but one finds a different correlation in the plumes, plasmapause and plasmasphere. This suggest that the hiss power is a result of local wave reflection and depends on the local topology of the field lines and plasma density.