Type III radio bursts are intense radio emissions excited by streams of suprathermal electrons of the solar origin often connected with solar flares and/or CME driven shocks. Two identical STEREO spacecraft provide us with unique measurements from two different vantage points that allow us to investigate the properties of their source regions. The High Frequency Receiver (a part of the STEREO/Waves instrument) on-board records all components of electric field fluctuations, covering a frequency range from 125 kHz up to 1975 kHz. We have identified more than 100 intense type III radio bursts between March 2007 and July 2010. Our results indicate that these bursts propagate generally in the solar equatorial plane. We have found that for lower frequencies the dispersion of distributions of the central directions toward the sources increases. Calculated source positions suggest that scattering of the primary beam pattern plays an important role in the propagation of type III radio bursts. We have also implemented a ray-tracing method to estimate properties of the sources for several events.