The characteristics of the circulation systems for summer monsoon rainfall over southern Taiwan during July-September were examined. Two types of monsoon systems were identified, namely Monsoon I and II, using 5 observational stations over southern Taiwan. Monsoon I was characterized by an anomalous cyclone/monsoon trough near the East China Sea and strong southwesterly flow near Taiwan. However, a significant trough existed over the South China Sea and a strong subtropical ridge protruded westward to eastern China in Monsoon II. Further separating the cases into the ISO westerly and easterly cases indicates that the ISO westerly phase of Monsoon I is characterized by a cyclonic circulation centered near the northern South China Sea and therefore creates a favorable environment for the anomalous cyclone and the monsoon trough to grow. However, in the easterly phase of Monsoon I, an anticyclonic circulation, with a zonal axis from the central South China Sea to the Philippine Sea, seemed to enhance the anomalous anticyclone and cause the subtropical ridge to stretch southwestward. The ISO westerly flow pattern of Monsoon II constructed a cyclonic circulation which happened to be co-located with the anomalous cyclone. Therefore, the ISO westerly phase created a favorable environment for the anomalous cyclone and the monsoon trough to grow deeper. In the ISO easterly phase of Monsoon II, there existed an anticyclonic circulation which is located over the monsoon trough and the subtropical ridge/anomalous anticyclone. This ISO anticyclonic circulation enhanced the ridge/anticyclone and suppressed the monsoon trough development.