The reality of crustal motion combined with the adoption of the International Terrestrial Reference Frame and the use of GNSS for survey measurements implies that positional coordinates of points anywhere in the world will change as a function of time. Since most users do not wish to deal with continuous changes in coordinates, most national geodetic datums have some mechanism to allow the effect of crustal motion to be removed. These techniques produce a small loss of accuracy but they provide the geospatial community with stable coordinates. One common technique is to adopt a crustal motion model that enables users to predict horizontal displacements for a user-specified location and project coordinates which may have been measured at many different times to a common epoch. To be useful though, these models must be accessible to the geospatial community. Because of its central role in storing and manipulating geographic data, Geographic Information System (GIS) software is an obvious way to make these models accessible to the community. As an example of how this aim can be realized, we focus on ongoing efforts by Esri to support the U.S. National Geodetic Survey's crustal deformation model in GIS and discuss how this effort could be extended to other countries such as New Zealand.