A homogeneous and complete earthquake catalogue is an essential component in seismic hazard studies. In this study, new empirical relations are developed for Iran and adjacent areas earthquakes. In this regard Iran earthquakes data containing more than 10,000 events, corresponding to a region limited by latitudes 23°–42° N and longitudes 42° W–65° E; and magnitude range Mw 3.5 – 7.9; from 3rd millennium B.C. until April 2010 were collected from national and international data banks. The variety of earthquake magnitude types and their important role in hazard estimations lead us to use one standard scale (moment magnitude), and convert all the magnitude types into moment magnitude using regression relationships. Moment magnitude was chosen as the standard magnitude, because it is a physically founded measure and most of the ground motion models are given for this parameter. We have evaluated linear regression between various magnitude types for different magnitude ranges. We have applied linear polynomial regression form for body wave magnitude, mb, surface wave magnitude, Ms, local magnitude, ML and local magnitude (Nuttli, 1973 modified by Rezapour, 2006), MN, versus Mw, for overlapping events. Several linear relations have been developed, involving mb – Mw, mb – Ms, Ms – Mw for two different magnitude ranges, MN – Mw and MN – ML. As a final point the algorithm of homogenizing magnitude is defined.