Accurate measurements of precipitation in different temporal and spatial scales, is important not only for weather and climate prediction but also for management in hydrology, agriculture, industry affairs. Measurement of precipitation give important information about global water cycle, distribution of latent heat of earth which have direct effect on general circulation of earth planetary. However, the surfaced-based observation network is distributed sparsely and the density of distribution is not homogeneous in many developing countries. Nowadays, satellite precipitation estimation is widely applied in monthly time scale and near real time for climatic studies, numerical weather prediction, flood warning, and water resources. In order to achieve more accurate monitoring of rainfall in different regions of Iran, PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) satellite-based precipitation data have been validated by comparison with APHRODITE (Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources) gauge-based precipitation product. PERSIANN is a satellite-based precipitation measurement algorithm that continuously provides near global (50°S-50 N) rainfall estimates at hourly 0.25° x 0.25° scale from geostationary satellite long-wave infrared imagery. APHRODITE is a surface-based observation at daily time scale with spatial resolution 0.25° x 0.25° over Asia. The PERSIANN and APHRODITE precipitation data were compared for time series of monthly areal average of precipitation, temporal and spatial correlation for monthly, seasonally and annual time scale over Iran from 2001 to 2007. The correlation coefficient for spring, autumn and winter were 0.68, 0.65, and 0.54 respectively over Iran country.