Submarine groundwater discharge (SGD) has become increasingly recognized as an important pathway of dissolved nutrients through freshwater into ocean. However, controlling factors of SGD distribution in connection with local hydrogeological setting as well as its importance to coastal ecosystems have not yet been clearly understood. Mt. Chokai (2,236 m), a Quaternary active volcano, is the highest peak in the northern Honshu, Japan, which slope is extending to Japan Sea. The coastal area at the mountain foot is very rich in natural springs without any river water discharges and also rich in natural oyster production. Therefore, this area provides an attractive test field for better understanding the manner of SGD distributions and also its relationship with oyster production. The SGD distribution was investigated by continuous ^{222}Rn monitoring method in very detailed scale along the coastal line (15 km in length). One line was measured by multi parallel method by using three Rad7 equipments, and the other line was measured by dual loop method by using one Rad7 equipment. Both results showed quite similar ^{222}Rn distribution patterns, peaked at the edge of volcanic flow lava. Our groundwater flow model implies that the recharged groundwater flows down through the base of young volcanic lava flow and discharges as spring at the point where hydric head meet the ground surface in the coastal area. This model fits well with our ^{222}Rn results. High ^{222}Rn peaks were found at high oyster production spots, suggesting the importance of SGD in oyster growth.