The problem of geoeffectiveness of solar energetic events and coronal holes consists of two parts: (i) impact of solar processes on the parameters of solar wind and interplanetary magnetic field (IMF) measured by satellites at L1 point and (ii) impact of solar wind and IMF on magnetosphere and geomagnetic activity. Thanks to Wind and ACE satellites, there is full data coverage since 1995. Period between 1995 and 2009 was used for our analysis. The causes of disturbances of the solar wind are either high-speed streams originating in coronal holes or coronal mass ejections (CME) from active regions. As a high speed stream pushes the slower particles, the common feature of all solar wind disturbances is enhanced particle density. Time behaviour as well as histogram of density indicates that 10 particles per cm3 is a reasonable limit for disturbed solar wind. About 1400 events were identified in the period between 1995 and 2009. An interesting feature of the solar wind is very high correlation between speed and logarithm of temperature (the median is 0.79). This correlation is even higher for solar quiet periods. It corresponds well to the general idea that magnetic field frozen in the fast CME prevents chaotic particle motion and thus decreases the temperature. Largest geomagnetic storms are usually connected with the large south component of IMF. Synoptic graphs of all above mentioned parameters were composed. They can help to better understand the related processes.