Most discussions of the stratospheric role in SH climate change have emphasized zonal mean downward coupling, via changes in the Southern Annual Mode, but recent studies have noted a large zonally asymmetric component in Southern Hemisphere stratospheric climate trends. To understand these trends we examine the decadal variations in planetary waves and in downward wave coupling - a major downward coupling process in the SH winter and spring, both in observations and in the GEOS CCM. Wave-wave cross correlations using MERRA reanalysis, suggest stratosphere-troposphere downward wave coupling in the Southern Hemisphere has become stronger over the past 3 decades, with more downward reflection during September-December. Wave geometry diagnostics indicate this is due both to an earlier onset of downward reflection in September, and to reflection lasting longer into December as a result of the delay in vortex breakup, attributed to ozone loss. A suite of different GEOS simulations of the past and future are then used to understand the impact of ozone changes on downward wave coupling.