It is commonly thought that aftershock sequences last only days after small earthquakes and only a few years after very large earthquakes. However, in intraplate areas at least, aftershock activity may last many centuries to millennia. Spatial clusters of persistent earthquake activity may be late aftershocks and indicate localities where strong earthquakes took place hundreds or thousands of years ago. Persistent modern earthquake activity may provide details of ancient mainshock ruptures associated with late aftershocks. For example, in many aftershock zones the largest earthquakes occur at the edges of the mainshock rupture, and larger modern earthquakes at the edges of seismicity clusters may show the ends of an ancient mainshock rupture. Focal mechanisms of the modern seismicity may indicate the focal mechanism of a past mainshock. From the length of a modern spatial seismicity cluster, the magnitude of a past mainshock can be estimated, and this magnitude combined with the rate of the current cluster seismicity can be used to estimate the time in the past when the mainshock took place. This information may help identify preinstrumental strong earthquake ruptures that are mentioned in historic earthquake accounts or that damaged archaeological sites. Regarding spatial clusters as aftershocks of past strong earthquakes means that the modern seismicity can be used to estimate how frequently strong earthquakes might take place in a region. For example, in the central and eastern United States, an analysis of seismicity clusters suggests there may have been about 10-15 M≥7.0 earthquakes during the past 2000 years.