The work main objective is to analyze interplanetary structures by studying the cosmic rays (muons), the interplanetary magnetic field and its interaction with the Earth magnetosphere. The CMEs (Coronal Mass Ejections) are one of the most important event that may produce strong geomagnetic storms. The main characteristics of the geomagnetic storms is a decrease of the H component of the Geomagnetic field. The cosmic rays may suffer a Forbush decrease by the CME presence observed as a decrease in the muons counts rate at ground level by Muti-directions Muons Detectors (MMD) such as the one at the Brazilian INPE's Southern Space Observatory – SSO/CRS/CCR/INPE–MCT, (29,43° S, 53,82° W, 488m a.s.l.), in South of Brazil. The study is concentrated in the data analyses from the interplanetary plasma observed by the ACE - NASA (Advanced Composition Explorer), at L1, to compute the beta parameter (ratio between the kinetic and magnetic pressures). Solar images observed by SOHO - NASA (Solar and Heliospheric Observatory) are used to estimate the CMEs velocities and the DMM mouns data counts to the identify possible decrease at specific directions. The results are compared with ACE satellite data (year, day, hour and velocity).