Since its arrival in the Saturnian system in July 2004, the Cassini-Huygens mission has entirely revolutionized our perspective of Titan and Enceladus. Titan’s surface presents many similarities with the Earth, possessing a solid diverse surface where terrestrial-like features have been detected. The discovery of organic liquid deposits essentially concentrated presently near its Northern polar region illustrates an active organic cycle, unveiling a possible coupling between the surface and the atmosphere, as well as seasonal variations. Titan’s surface is under investigation especially as concerns surficial morphotectonics and composition. The landscape consists of several - possibly tectonic-originated - structural features such as ridges, mountains, faults and canyons. In addition, potentially active regions on Titan’s surface suggest an interplay between the dynamic interior, the surface and the atmosphere through areas of active cryovolcanism. Furthermore, Enceladus - another Saturnian satellite - is now considered as a planetary body with active tectonism and cryovolcanism. Like Titan, Enceladus presents Earth-analogue features, which seem to have been formed following patterns similar to the ones acting in the terrestrial tectonic shape of morphology. Our current understanding through the processing of the Cassini-Huygens database suggests a future mission towards these worlds as a priority to space exploration science. In this study, we present an overview of the morphotectonic features of both satellites, as well as a despeckle filter for SAR images which provide us with more qualitative data in regard to these features. Also the compositional potential of the cryovolcanic regions is being investigated through VIMS data analysis.