Large igneous provinces (LIPs) host the most frequently recurring, largest volume basaltic & silicic eruptions on Earth. The largest volume (>1000 km3 DRE) and magnitude (>M8) eruptions produce areally extensive (104-105 km2) basaltic flow fields and sills, and silicic ignimbrites that are the main LIP building blocks. Basaltic and silicic eruptions have comparable magnitudes, but silicic ignimbrite volumes may be significantly underestimated due to unrecognized and correlated, but voluminous co-ignimbrite ash deposits. Magma composition is no barrier to individual eruption volume. Despite similar magnitudes, flood basaltic and silicic eruptions are very different in eruption mechanism, duration, intensity, vent configuration, and emplacement style. Flood basalts are dominantly effusive Hawaiian-Strombolian, with magma discharge rates of ~107-108 kg s$^{-1}$, and produce dominantly compound pahoehoe flow fields over eruption durations most likely >10 yrs. Most silicic eruptions are moderately to highly explosive, producing con-current pyroclastic fountains (rarely Plinian) and suggested to be of short-duration (hours to days) and high intensity (~1011 kg s$^{-1}$). Eruption frequencies are elevated for large-magnitude eruptions of both magma types during LIP formation. In basalt-dominated provinces, large magnitude (>M8) eruptions have much shorter recurrence intervals (103-104 years) than similar magnitude silicic eruptions (~105 years). The huge volumes of magma erupted rapidly in LIPs raises several unresolved issues in terms of locus of magma generation and storage (if any) in the crust prior to eruption, the paths and rates of ascent from magma reservoirs to the surface, and relative aerosol contributions to the stratosphere from the flood basaltic and rhyolitic eruptions.