Volcanic activity cannot be controlled but it may affect our twenty-first-century lifestyle and impact global sustainability. The twentieth century was perhaps unusually free of explosive eruptions that affected highly populated Northern Hemisphere regions (where ~90% of global residents live), thus our perspective on aspects of widespread volcanic hazard and risk should be re-evaluated. Positive effects of future eruptions include sulphur gas release, which can help offset global warming via radiatively effective stratospheric aerosols, and ash-fall onto oceans, which may help decrease atmospheric CO$_2$. Generally, volcanic phenomena pose risk to society, even for small-volume, ash-producing and potentially-long-lasting explosive eruptions such as Eyjafjallajökull 2010 (VEI 4), which are common (several per decade globally). Ashclouds are hazardous to aviation and are difficult to mitigate, as events in Europe last Spring attest. Shorter-lived explosive events up to VEI 6 (Krakatau-size, ~2 per century) may pose greater overall risk, with ash and aerosols affecting global climate, weather, and communications. Perhaps VEI 7 explosive eruptions (bigger than Tambora 1815) should concern us most? They are under-reported in the record, with a >10% chance of one occurring in the next century. Basaltic fissure eruptions can also cause long-lasting aerosol clouds, with possible widespread health effects. Little information exists on potential effects to aircraft flying through dense aerosol clouds. Society should not be overly concerned about newsworthy-but-rare super-eruptions (>VEI 8); the probability of one occurring in the foreseeable future is negligible and expected climatic impacts may not be as severe as past studies suggested. Statements herein are those of the author and do not necessarily reflect the view or regulatory position of the US NRC.