The original Argo design calls for accuracies of $\pm 0.01^\circ$C and ± 0.01PSU. Recalibration of six recovered floats, however, shows lifetime stability better than 0.002°C and 0.005PSU, respectively. The performance of the temperature sensors is slow steady drift. The performance of the conductivity sensors, however, is potentially more unpredictable because of biofouling. Two avenues for in-situ validation are float-to-float comparisons and float to ship-based-CTD comparisons. This work analyses prospective ongoing use of the several hundred ship-based-CTD profiles collected in the NZ region each year for assessing Argo accuracy in the New Zealand regional ocean. Working on the realisations of the two datasets over the years 2005 to 2010, the method used is to search for matches, within defined margins, in the positions and times of profiles, and then, provided two matched profiles both exceed 500m in depth, to compare salinity as a function of potential temperature for depths below 100m above the bottom of the shallower profile. For margins of 20km and 20days, there are approximately fifteen matches, and in these cases, the salinity comparison of the two matched profiles is typically in the range 0.001 to 0.005PSU. For 100-km, 100-day margins, there are several hundred matches. Thus far, the study indicates general Argo salinity performance consistent with the original design accuracy and consistent with the performance indicated by recalibrations of recovered floats. Evidently, the yield in in-situ validation of Argo floats could be improved by relatively minor adjustments to research cruises, particularly near regions of high float density.