As NWP is primarily an initial value problem, there is a reasonable expectation that by assimilating high resolution observations of rainfall, cloudiness and windspeed the short term skill of model predictions should be increased. Work is underway in many groups who are attempting to assimilate radar observations of reflectivity and radial Doppler winds into convective scale models as well as the assimilation of satellite derived cloudiness data. However, the optimum way to achieve this is not clear. We present some results and illustrate some problems for quantitative precipitation forecasts (QPF) obtained using WRF initialized with VAR and radar reflectivity and Doppler wind data. In addition there remain some questions about the best way to determine QPF skill. Direct comparison of model accumulations to gauge networks or remotely sensed satellite or C-band radar areal accumulations is problematic as each observation type suffers from scale problems, particularly at the scales associated with convective rainfall. In this work we use a high resolution X-band radar accumulation product, which overcomes some scale problems, to estimate the total precipitation falling into the catchment. This observation can then be compared to forecast accumulations falling into a catchment and the ability of the resulting forecast to adequately represent the streamflow as compared with the high resolution radar data can be determined by comparison with actual streamflow records.