The Effect of External Factors on the Floating Mertz Glacier Tongue (East Antarctica) Prior to Its Calving

R. Massom1,2, A.B. Giles2, R.C. Warner1,2, B. Legresy3, H.A. Fricker4, L. Lescarmontier2,3, G. Hyland1,2, N. Young1,2

1Australian Antarctic Division, Kingston, Australia; 2Antarctic Climate and Ecosystems Cooperative Research Centre, Sandy Bay, Australia; 3CNRS LEGOS, Toulouse, France; 4Scripps Institution of Oceanography, La Jolla, USA

This satellite-based study examines the dynamics and characteristics of the floating Mertz Glacier Tongue (MGT) in the decade prior to its calving in 2010, on a broad spatio-temporal scale. It shows that the tongue, the seaward extension of a major East Antarctic outlet glacier, has exhibited major and abrupt changes in flow and physical characteristics in response to previously under-appreciated external factors. These include contact of the northwestern tip of the advancing MGT with both the seabed and a small grounded iceberg. By lodging in a longitudinal rift, the latter “chiselled” approximately 40 square kilometres off the MGT over a 5-year period. A large-scale eastward deflection of the MGT flow trajectory due to the seabed contact coincided with rapid development of the western part of a major through-cutting rift system across the MGT, approximately 70-75km to the south, along which the vast iceberg C28 calved in 2010. Other important external factors identified include a collision with large iceberg C08 (calved from the Ninnis Glacier in 1980-82), and the perennial presence of an extensive slab of very thick land-fast sea ice attached to the eastern margin of the MGT. Mechanical coupling to this slab may have played a role in stabilising the MGT. We propose that such case-specific external factors represent key processes that affect ice tongue dynamics, and that understanding such processes is critical to assessing how glacier tongues calve.