Prolonged episodes of tremor and slow slip have been documented for the northern Cascadia subduction zone over two decades. Although the processes involved in ETS are not yet fully understood, seismic and geodetic observations to date suggest spatial and possibly temporal relationships between ETS and regional earthquake activity. Spatially, ETS and regional seismicity tend to be mutually exclusive. Although the last Cascadia subduction-thrust earthquake pre-dates written records, it can be argued that the up-dip limit of the ETS slip zone marks the maximum down-dip limit of the next megathrust rupture. Furthermore, the northern Cascadia ETS zone appears to overlie a portion of the descending Juan de Fuca plate with fewer in-slab earthquakes. Tremor sources have an extended depth distribution and appear more prevalent in regions with sparse crustal seismicity. Epicentres of the two large (M~7) crustal earthquakes that occurred on central Vancouver Island coincide with a gap in tremor concentrations. The tremor gap may be due to structural changes or the result of a stress shadow of the large earthquakes. Other temporal relationships are more conjectural. ETS episodes involve slip on the deeper plate interface and it is conceivable that a slip event could trigger rupture on the locked portion of the thrust fault. A search for changes in rates of in-slab earthquakes coincident with ETS events has produced ambiguous results so far. Also, no convincing temporal correlation has yet been established between ETS occurrence and low-magnitude crustal seismicity.