We have developed UT-OBCS, a new ocean bottom cabled seismometer for a high density seismic array network, with utilizing ICT (Information and Communication Technologies), i.e., IP (Internet Protocol) on the seafloor. UT-OBCS is compact and a low cost. The system reliability is kept by a redundant transmission route design. We started a real time seafloor observation in the Sea of Japan by installing four UT-OBCSs in 2010. Historical large earthquakes have occurred in and around Niigata-Kobe Tectonic Zone (NKTZ) which has a large strain rate. The 1964 Niigata earthquake occurred in NKTZ off Niigata Prefecture, Japan. It is one scientific target to derive a source model of the 1964 Niigata earthquake by a detailed study of seismic activity in the observation region. Both the four UT-OBCSs and a submarine cable of 25 km in total were laid on the seafloor at about 100 - 120 m water depth and buried 1 m below the sea bottom simultaneously with using a cable burying machine, PLOW II. The purposes of burial are 1) to protect the system from fishing equipment or anchors of large vessels, 2) to enhance the ground coupling of the UT-OBCSs, and 3) to lower the level of seismic noises induced by water current. The Sea of Japan system is partly intended to do a demonstration test of our newly developed UT-OBCS system. We are now in the stage of accumulating data of seismic events in the NKTZ for our scientific target and for the demonstration test.