Mediterranean tectonics has been characterized by complex temporal evolution with episodic rollback and retreat of the subducted plate. To provide insight into central Mediterranean geodynamics, we study structure of the convergent African and Eurasian lithospheric plates beneath Italy by imaging the Moho and lithosphereasthenosphere boundary using S-receiver functions. The Moho is represented by the first positive arrival in the receiver functions between 20-50km depth and the primary negative arrival associated with the LAB has a significant depth range of 50-200km beneath Italy. The lithospheric thickness and structure can be interpreted in terms of individual tectonic regions. Beneath the Iblean and Apulian forelands the lithosphere is imaged as 80-100km thick, which is attributed to the undeformed continental margin of Africa as it enters the subduction zone. Along the Northern Tyrrhenian Sea the lithosphere is thinned to approximately 60-km, where Eurasia is stretched by trench retreat eastwards towards the Adriatic Sea. Beneath Sardinia, the lithosphere is 130km thick where remnant continental block has been rifted off. Beneath the central part of the Italian peninsula, where the “subduction factory” is still active, we find evidence for complex structure, where two different negative S-velocity jumps are present at approximately 90 and 160km depth, which may be evidence of stacked continental and oceanic lithosphere. In contrast, the lithospheric structure is less complex beneath the southern peninsula, with an almost flat LAB morphology at ~110km. Beneath Calabria and the Tyrrenhian and Ionian coasts the images are very different, suggesting the flexure of the plate.