Deep tremor is considered as successive slip on unstable slip areas embedded in stable slip area on the plate interface (e.g. Nakata et al., 2011). Although some stochastic models (e.g. Ide, 2008) can explain various characteristics of observed tremor, the location of tremor sources is rather fixed similarly to small repeating earthquakes on plate interfaces. Ide (2010) developed a modified envelope correlation method to determine tremor hypocenter automatically, and investigated tremor activity in western Shikoku in the Nankai subduction zone. Each area has a characteristic tremor duration, which is also related to the recurrence interval, migration behaviour, and sensitivity to tidal stress. The distribution of sources includes many striations in subduction direction, suggesting that tremor source distribution is constructed by fluid supplied by plate subduction, for a period longer than 10 Ma. The same observation seems to be valid for other tremor zones worldwide. Here I show additional examples of application of this method to continuous seismic records in various subduction zones. We can successfully determine tremor sources in Nankai, Cascadia, northern Mexico, and southern Chile. The comparison suggests that the width in plate subduction direction is an important factor to control the source duration, and hence diverse behaviour of tremor. This width may divide stochastic and deterministic regimes of tremor behaviour.