Surface and spatial geodetic observations indicated that the Tibetan plateau is undergoing obvious geodynamic changes, e.g., the temporal gravity at Lhasa shows negative change rates of $-1.97\pm0.66\ \mu\text{gal/yr}$; the uplift rate is $+0.8\pm0.5\ \text{mm/yr}$ (Sun et al., 2009); On the other hand, the GRACE data show that about 4.70 Billion tons/yr of ice is losing on the plateau (Matsuo and Heki, 2010). These results imply that the reasons to cause such dynamic changes are different by different researches. To clarify this divergence, this paper performs numerical simulations for different spatial radii of the Gaussian filter to investigate its behaviors when applied to surface signals. Results show that the estimate of the gravity rate of change is spatial-radius-dependent of the Gaussian filter. The GRACE-estimated gravity rate of change agrees well with the surface measured one. That is, the GRACE-estimated gravity rate of change has a limited value as that obtained by surface measurement when the spatial filter radius goes to zero. These properties of the Gaussian filter are helpful in applying GRACE data in different physical problems with different spatial position and geometrical size. Further discussions on physical sources causing the scalar gravity change at Lhasa indicate that the gravity rate of change at Lhasa is not caused by the PDIM (or LIA) effect. The gravity rate of change is attributable mainly to tectonic deformation associated with the Indian Plate collision. Simultaneous surface displacement, surface denudation, and GIA effects are not negligible.