Oldoinyo Lengai, situated in the Gregory Rift, Tanzania, is well known as the world’s only active carbonatite volcano with the unique production of natrocarbonatite lava. However, the stratovolcano is predominantly formed of silicate lavas and pyroclastics, namely nephelinite and phonolite. During the 2007 explosive activity, a suite of xenoliths were ejected as volcanic bombs were collected from the rim of the Northern crater and the inactive Southern crater. These xenoliths include ijolitic, nephelinitic, phonolitic, syenitic and fenites, which are indicative of the sampled subsurface stratigraphy. The silicate minerals contain both solid carbonate (XCO$_3$) melt inclusions as well as primary and pseudosecondary fluid inclusions. These inclusions are single or multi-phase inclusions rich in carbon phases. Using confocal Raman spectroscopy on inclusion trails contained between 10 – 180 microns depth within crystals of alkali feldspar, apatite and nepheline, revealed the presence of carbon dioxide (CO$_2$) vapour, nahcolite crystals (NaHCO$_3$), burbankite and the CO$_2$ signature of an unknown carbonate, all of which are characteristic of carbonatite systems. However, the spectra for frankamenite and zabuyelite and an unidentified silica phase were also found, which have not previously been documented in carbonatite systems. All phases are typical of alkali rich systems and could provide an indication of the ‘source’ fluids, which are lost during crystallisation of natrocarbonatite and cause metasomatism of surrounding rock units. We aim to expand on this data using qualitative techniques (FTIR, Microthermometry or LA-ICP-MS) to allow us to calculate the composition of this unique carbonatitic fluid, which is rapidly altered upon extrusion.