Study report the probabilities of occurrence and the magnitudes of future large earthquake in nineteen seismogenic sources of northeast India and nearby region (20 – 32 N, 88 – 98 E). Taking into account the seismicity data \((M_s \geq 5.5)\) since 1906 to 2008 for all these sources and regional time- and magnitude-predictable model applicability; the predictive relations

\[
\log T_t = 0.01 M_{\text{min}} + 0.22 M_p - 0.05 \log m_0 + 0.98; \quad \text{and} \quad M_f = 0.89 M_{\text{min}} - 0.26 M_p + 0.29 \log m_0 - 5.5
\]

have been computed having multiple correlation coefficient and uncertainty values 0.50 & 0.26; and 0.75 & 0.41, respectively. Here \(T_t\) is the inter-event time measured in years, \(M_{\text{min}}\) is the surface wave magnitude of the smallest mainshock considered, \(M_p\) is the magnitude of the preceding main shock, \(M_f\) is magnitude of the following mainshock, and \(m_0\) is the released seismic moment per year in each source. On the basis of these relations and model parameters and using the magnitude and time of occurrence of the last mainshocks in each seismogenic source, time dependent conditional probabilities of the impending mainshocks during the next 10, 20 and 30 years as well as the magnitude of the expected main shocks are forecast. Study, assign that the probability for the occurrence of future earthquake in sources 1, 5, 7, 8, 9, 10 and 14 is maximum (1.0) warrant certain potential hazard in the region.